Compressed Spectrum Sensing in Cognitive Radio Network Based on Measurement Matrix

نویسندگان

  • Ali Shahzadi
  • Hadi Soltanizadeh
چکیده

Compressive sampling (CS), or compressive sensing, has the ability for reconstructing a sparse signal with small number of measurements. There are some applications like spectrum sensing in cognitive radio which not necessarily need a perfect reconstruction. Consequently in this application, toward the decrement of high signal acquisition costs in wideband system, CS methods have been used for spectrum sensing. New developments in CS have presented a new way toward the reconstruction of the original signal by using minimum number of observations. In this paper, we present a novel method in which CS is employed for compressing spectrum sensing in CRNs. Also, we include the explanation for showing that how CS utilization actually can attain the advantage of sampling and computational complexity reduction at a same time. For simulating the compressive sensing application in Cognitive Radio network the measurement matrix made by some random numbers is multiplied in the spectrum which is occupied by users. The mentioned measurement matrix is chosen with a procedure in which by using an optimization technique the sparse spectrum can be precisely recovered. By using an available multiple optimization technique the spectrum can be reconstructed by small number of samples. MATLAB software is used for the simulation of the algorithm. A reliable Spectrum sensing, even in low SNR, and small number of samples, is confirmed by results of the simulation. These results demonstrate that this method can lead to a faster measuring range in comparison with other existing approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wideband Spectrum Sensing based on Sparse Channel State Recovery in Cognitive Radio Networks

Motivated by the compressed sensing sparse channel estimation problem, the complete channel state is sparse under the conditions of low spectral efficiency. Other than traditional method of looking for the perception of spectrum holes, this paper focus on the sparse of occupied sub-channels. Based on compressed sensing technology, a novel cooperative wideband spectrum sensing method is proposed...

متن کامل

Application of Compressed Sampling for Spectrum Sensing and Channel Estimation in Wideband Cognitive Radio Networks

In the last few years Compressed Sampling (CS) has been well used in the area of signal processing and image compression. Recently, CS has been earning a great interest in the area of wireless communication networks. CS exploits the sparsity of the signal processed for digital acquisition to reduce the number of measurement, which leads to reductions in the size, power consumption, processing t...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Cooperative Spectrum Sensing and Localization in Cognitive Radio Systems Using Compressed Sensing

In this paper, we propose to fuse two main enabling features in cognitive radio systems (CRS): spectrum sensing and location awareness in a single compressed sensing based formalism. In this way we exploit sparse characteristics of primary units to be detected, both in terms of spectrum used and location occupied. The compressed sensing approach also allows to overcome hardware limitations, in ...

متن کامل

Attack-Aware Cooperative Spectrum Sensing in Cognitive Radio Networks under Byzantine Attack

Cooperative Spectrum Sensing (CSS) is an effective approach to overcome the impact of multi-path fading and shadowing issues. The reliability of CSS can be severely degraded under Byzantine attack, which may be caused by either malfunctioning sensing terminals or malicious nodes. Almost, the previous studies have not analyzed and considered the attack in their models. The present study introduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014